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Abstract

Over the years since this book was published in 1986, I have discov-
ered that various statements are incorrect, could have been emphasised
differently, or should have been included but were not. This attempts to
remedy some of these.

1 Introduction

This update refers to my book ‘Statistics for Nuclear and Particle Physicists’,
published by Cambridge University Press in 1986. Below are listed statements
that were incorrect, those where the emphasis could have been better, omissions
and typos. In general I attempt to give references to useful information, rather
than to provide a full discussion here. Most of these updates are covered in refs.
[1] and [2].

If you are aware of any other possible improvements, please e-mail me.

2 Errata

2.1 Coverage issues

Page 90: sentence around eqn (4.26). This refers to the likelihood method of
determining a range for a parameter by finding the values where the logarithm
of the likelihood function decreases by 0.5 units from its maximum value. The
sentence in the text states that, if the measurement is repeated again and again,
this procedure results in a series of ranges of which 68% will (in the absence of
biases in the measurement) contain the true value of the parameter. In general
this statement is untrue.

For a given procedure for determining a range for a parameter, the fraction
of times this results in a range that does include the true value is called the cov-
erage C. It is important to be aware of the fact that coverage is a property of
the statistical procedure being used, and does not apply to the particular mea-
surement you are making. Ideally we would like C to equal the nominal expected
confidence level for the intervals (68% for the ∆ log L = 0.5 rule quoted above),



and to be independent of the values of the parameter. Joel Heinrich[3] has in-
vestigated the problem of estimating ranges for the parameter µ of a Poisson
distribution from the number of observed counts n; the methods used include
likelihood, χ2, central frequentist intervals, Feldman-Cousins,.... Because in
this situation the observations are discrete, the coverage has discontinuities as a
function of µ. Plots of C for each method show that C varies by large amounts
at small µ, and is as low as ∼ 30% for µ ∼ 0.5 for the ∆ log L = 0.5 method.
For frequentist methods, C is guaranteed not to fall below the nominal value
for any value of µ, but the discontinuities then result in overcoverage for most
or all values of µ.

The conclusion is that coverage is not guaranteed by the likelihood method,
and undercoverage is a possibility. If this is regarded as an important issue,
the coverage properties of the method should be investigated for the particular
measurement being made.

2.2 Unbinned maximum likelihood as goodness of fit?

Comment (xii) in Section 4.4.3 of the book states that the value of Lmax, the
observed maximum of the (unbinned) likelihood function, can be used to assess
whether the assumed functional form with the best fit values of the parameters
provides a satisfactory fit to the data. This is in general incorrect.

For the case of a likelihood determination of a lifetime, using a probabil-
ity density (1/τ) exp(−t/τ), Heinrich[4] has shown that Lmax depends on the
observed decay times only through their average, but not at all on their distri-
bution. Thus Lmax is incapable of distinguishing between n decays which are
approximately exponentially distributed with average time t, and a sample of n
decays all of which decay at the same time t. This means that at least in this
case Lmax provides no information concerning the goodness of fit of the data to
the assumed distribution.

Other examples show similar behaviour. There are even cases where a larger
value of Lmax indicates a worse fit.

In contrast, a maximum likelihood approach to a histogram of data (rather
than to a series of individual observations) can yield goodness of fit information
if a likelihood ratio is used[5].

3 Clarifications

3.1 Punzi effect for PID

On page 101, likelihood functions are given for determining how many pions and
kaons there are in a sample of events for which particle identification information
is available. The first formula uses a normalised fit to determine the fractions of
each type of particle, while the second uses the ‘extended maximum likelihood’
approach to estimate the actual numbers of pions and of kaons (see next para-
graph). These formulae are suitable for particles of a fixed momentum, but if
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they have a momentum spectrum, and the spectra for pions and kaons differ, the
formulae as they stand will give a biassed result, because of the Punzi effect[6].
This arises because for most particle identification techniques, the lower mo-
mentum particles are easier to separate than those at higher momentum, and
so a fit to a complete spectrum of momenta is likely to give estimated fractions
that are based on the actual fractions at low momenta. The way to modify the
formulae to provide unbiassed estimates for a complete spectrum of momenta
is discussed by Catastini and Punzi[7].

The wording explaining the difference between the two types of likelihood
fit could have been better. For example:
(ii) What is our estimate of the fraction of pions and the corresponding un-
certainty based on samples like ours, given it contained nobs tracks? This is
answered by the maximum likelihood approach.
(iii) What is our estimate of the number of pions and the corresponding un-
certainty for samples like ours, but in which the total number of tracks varies
in a Poissonian manner? Here the extended maximum likelihood approach is
needed.
Thus with 100 tracks of which 96 are identified as pions, our estimate of the
pion fraction in (ii) is 0.96± 0.02, while in (iii), the estimated number of pions
is 96± 10.

In the last paragraph on page 101, the remark about the covariance being
zero in the absence of ambiguities applies to the extended maximum likeli-
hood case (as stated). For the ordinary likelihood determination, where nobs is
regarded as fixed, the estimates of the pion and kaon fractions are completely
anti-correlated (even with no ambiguities in identification) because the fractions
must add up to unity.

3.2 Number of degrees of freedom

On the middle of page 112, point (b) states that the number of degrees of
freedom ν in assessment of a χ2 value in a goodness of fit to some data is given
by b−p, where b is the number of data points included in the comparison, and p
is the number of free parameters in the fit. This may be true asymptotically,
but not for smaller amounts of data.

For example, in a situation where we have two neutrino flavours that are
mixing, the survival probability P for a neutrino of type i is given by

P = 1−A sin2(k∆m2L/E), (1)

where A and ∆m2 are the two parameters of interest, L and E are respectively
the distance the neutrino has travelled and its energy, and k is a known constant.
We appear to have 2 free parameters. However, as explained by Feldman and
Cousins[8], when ∆m2 is such that the angle k∆m2L/E is small, the sine of this
angle is approximately equal to the angle itself, and so P ≈ 1−A(k∆m2L/E)2.
Then the parameters appear in the fitting function only in the combination
A ∗ (∆m2)2. Thus in this region of small ∆m2, there is essentially only one
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free parameter, while there are effectively two free parameters for larger ∆m2.
However asymptotically, we would have enough data to distinguish between
sin(k∆m2L/E) and k∆m2L/E, and so we would then have two parameters
everywhere.

The assymptotic requirement discussed here is in addition to the necessity
for a histogram to have enough data so that the number of entries in each bin
is approximately Gaussian distributed.

3.3 ‘Goodness of Fit’ and ‘Hypothesis Testing’

It is becoming customary in Particle Physics to use the term ‘Goodness of Fit’
for testing the consistency between data and a single hypothesis H0, while ‘Hy-
pothesis Testing’ implies seeing which of two hypotheses H0 and H1 (typically
the Standard Model and some version of New Physics respectively) is favoured
by the data, perhaps also considering other input such our prior beliefs about
the models.

Although there is discussion in my book of Goodness of Fit by the χ2 method,
there is almost no mention of methods for Hypothesis Testing. This is discussed,
for example, in ref. [9]. Also there are methods other than χ2 for assessing
Goodness of Fit.

3.4 Kinematic Fitting

This is discussed in Section 5.2 in the book.
Steffen Lauritzen[10] has pointed out that the usual weighted sum of squared

deviations S is not expected to follow a χ2 distribution if the kinematic con-
straints (usually momentum and energy) are non-linear in the variables which
have Gaussian experimental uncertainties. If the magnitude of S is used to se-
lect wanted events, the loss of signal resulting from the requirement S < Smax

needs to be investigated, rather than simply using χ2 tables.

4 Additions

If a new edition of the book were to be produced, here are some extra topics
that should be included.

4.1 Bayes versus frequentism

Given that there are these two fundamentally different approaches to statistical
analyses, there should have been a discussion of these two methods, emphasis-
ing their different philosophies (including their definitions of probability) and
practicalities. For a discussion, see for example ref. [11].
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4.2 Signal/background separation

Almost every experiment in High Energy Physics uses a multivariate technique
for separating signal from unwanted background. A wide variety of methods
is available. Information and details of software are available for the packages
TMVA[12] and StatPatternRecognition[13].

4.3 Blind analyses

Although they are not applicable to all search or measurement experiments,
or to early analyses with a new detector, blind analyses are becoming more
popular. They avoid unconscious bias on the part of the physicist, but this has
to be weight against the longer times taken in defining the analysis procedure.
A review is by Klein and Roodman[14].

4.4 Searches

Given the large number of experimental papers reporting on unsuccessful searches
for various forms of new particles or new interactions, an industry has grown
up for calculating upper limits on effects that have not been seen. The first two
workshops of the PHYSTAT series[21, 27] were devoted to just this topic (see
also ref. [15]).

Hopefully, future experiments will be successful in searches for new physics
beyond the Standard Model. Statistical issues related to discovery claims were
discussed in the 2007 PHYSTAT meeting[26].

4.5 ∆χ2 = χ2 ?

In comparing data with two hypotheses, the one which gives a much larger
χ2 than the other may be rejected. For example, we could be comparing a
mass histogram with the Standard Model which may predict a smooth mass
distribution, or with a model which includes a new particle, when we would also
expect a narrow bump in the distribution.

The question is how the difference in χ2 values should be assessed. When the
model with the fewer free parameters is true, and when certain conditions are
satisfied, Wilks’ Theorem[16] says that this difference should be distributed as
χ2 with the number of degrees of freedom equal to the difference in the number
of free parameters in the two models. For the case of the search for a new
particle with an unknown mass, the required conditions are not satisfied, and so
the significance of any suspected effect cannot be assessed from χ2 tables. This
is discussed in refs. [17] and [18].

4.6 Sensitivity of experiment

In comparing different experiments, or different analyses of the same experi-
ment, it is useful to define which is more sensitive for the determination. This
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could be, for example, the expected number of standard deviations for the signif-
icance claim of the discovery of a new particle, whose expected mass, production
rate, etc, are known; or the upper limit expected on the production rate of a
hypothesised particle if it really is not produced; or the length of the shortest
two-sided interval for a measurement of a given parameter; etc. The sensitivity
of a measurement is independent of the actual data, and so is not affected by
its particular statistical fluctuations. Thus it is possible for one experiment to
have a larger upper limit than another, even though its sensitivity for exclusion
is better.

Punzi[19] has argued that, in an experiment searching for a new particle
where possible outcomes are discovery, exclusion or no decision, the sensitiv-
ity should be defined as the integrated luminosity required for there to be no
ambiguous ‘no decision’ region.

4.7 Systematics

Systematic errors were discussed briefly in Section 1.3 of the book. A fuller
review, where other references can be found, is by Heinrich and Lyons[20].

4.8 Bibiliography

Some new literature relevant to the statistical analysis of data in Particle Physics
and related subjects has appeared since the book was published. There have
been several meetings in the PHYSTAT series; the Proceedings of all of these
have appeared[21] - [26], except for the one at Fermilab[27]. The book by Eadie
et al[28] has been substantially updated by Fred James[29], and several books
have been written by Particle Physicists[30] - [32]. Interesting relevant issues
are also discussed at the Statistics Committees that have been established by
several of the large experiments[33] - [35].

5 Typos

• Page 15, 4 lines below eqn 1.18 (variance of sum of ri for Central Limit
Theorem):
‘and variance Σσ2

i /n’ should be ‘and variance Σσ2
i /n2’.

• Page 142, in comment (i):
‘δyi’ should be replaced by ‘δxi’.
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